ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
Operat	ions and Algebraic Thinking				
5.0A	Write and Interpret numerical expressions				
1	1. Use parentheses, brackets, or braces in	{5(2+3) + 7(5-1)}			
	numerical expression, and evaluate				
	expressions with these symbols.				
1	2. Write simple expressions that record	Express the calculation "add 8 and 7, then			
	calculations with numbers, and interpret	multiply by 2" as $2x(8+7)$. Recognize that			
	numerical expressions without evaluating	3x(18932+921) is three times as large as			
	them.	18932+921, without having to calculate the			
		indicated sum or product.			
5.0A	Analyze patterns and relationships				
1	3. Generate two numerical patterns using	Given the rule "Add 3" and the starting			
	two given rules. Identify apparent	number 0, and given the rule "Add 6" and the			
	relationships between corresponding terms.	starting number 0, generate terms in the			
1	4. Form ordered pairs consisting of	resulting sequences.			
	corresponding terms from the two patterns,	Observe that the terms in one sequence are			
	and graph the ordered pairs on a coordinate	twice the corresponding terms in the other			
	plane.	sequence. Explain informally why this is so.			
Numbe	r and Operations in Base Ten				
5.NBT	Understand the place value system				
1	1. Recognize that in a multi-digit number, a	In the number 333, the 3 in the tens place is			
	digit in one place represents 10 times as	ten times bigger than the 3 in the ones place			
	much as it represents in the place to its right	and $1/10$ as big as the number in the hundreds			
	and $1/10$ of what it represents in the place to	place.			
	its left.				
1	2. Explain patterns in the number of zeros	3x10=30; 3x100=300; 3x1000=3000			
	of the product when multiplying a number				
	by powers of 10.				
1	3. Explain patterns in the placement of the	0.32x10=3.2; 0.32x100=32			
	decimal point when a decimal is multiplied	0.32÷10=0.032; 0.32÷100=0.0032			
	or divided by a power of 10.				

Mastery Level (ML) Codes:	1=Standard should be taught in de	pth: 2=Students need a	basic foundation; 3=If time permits

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
2	4. Use whole-number exponents to denote	$10^2 = 100; 10^3 = 1000$			
	powers of 10.				
1	5. Read, write, and compare decimals to	347.392=3x100+4x10+7x1+3x(1/10)+			
	thousandths.	9x(1/100) + 2x(1/1000)			
	5a. Read and write decimals to thousandths				
	using base-ten numerals, number names,				
	and expanded form.				
1	5b. Compare two decimals to thousandths				
	based on meanings of the digits in each				
	place, using <, =, > symbols to record the				
	results of the comparison.				
1	6. Use place value understanding to round				
	decimals to any place.				
	Perform operations with multi-digit whole n	umbers and with decimals to hundredths		1 1	
1	7. Fluently multiply multi-digit whole				
	numbers using the standard algorithm.				
1	8. Find whole-number quotients of whole				
	numbers with up to four-digit dividends and				
	two-digit divisors, using strategies based on				
	place value, the properties of operations,				
	and /or the relationship between				
	multiplication and division. Illustrate and				
	explain the calculation by using equations,				
1	rectangular arrays, and/or area models.				
1	9. Add, subtract, multiply, and divide				
	decimals to hundredths, using concrete models or drawings and strategies based on				
	place value, properties of operations, and/or				
	the relationship between addition and				
	subtraction; relate the strategy to a written				
	method and explain the reasoning used.				
	method and explain the reasoning used.				

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources			
Numbe	Number and Operations-Fractions							
5.NF Use equivalent fractions as a strategy to add and subtract fractions								
1	1. Add and subtract fractions with unlike	2/3 + 5/4 = 8/12 + 15/12 = 23/12						
	denominators (including mixed numbers)	In general, $a/b + c/d = (ad + bc)/bd$.						
	by replacing given fractions with equivalent							
	fractions in such a way as to produce an							
	equivalent sum or difference of fractions							
	with like denominators.							
1	2. Solve word problems involving addition							
	and subtraction of fractions referring to the							
	same whole, including cases of unlike							
	denominators.							
2	3. Use benchmark fractions and number	Recognize an incorrect result $2/5 + 1/2 = 3/7$,						
	sense of fractions to estimate mentally and	by observing that $3/7 < 1/2$.						
	assess the reasonableness of answers.							
5.NF		of multiplication and division to multiply and d	livide fraci	tions				
1	4. Interpret a fraction as division of the	Interpret $3/4$ as the result of dividing 3 by 4,						
	numerator by the denominator $(a/b=a\div b)$.	noting that 3/4 multiplied by 4 equals 3, and						
	Solve word problems involving division of	that when 3 wholes are shared equally among						
	whole numbers leading to answers in the	4 people each person has a share of size 3/4.						
	form of fractions or mixed numbers.	If 9 people want to share a 50-pound sack of						
		rice equally by weight, how many pounds of						
		rice should each person get? Between what						
1	5 Apply and autond provides	two whole numbers does your answer lie? Use a visual fraction model to show						
1	5. Apply and extend previous understandings of multiplication to multiply	$(2/3) \ge 4 = 8/3$, and create a story context for						
	<u>a fraction or whole number by a fraction.</u>	$(2/3) \times 4 = 6/3$, and create a story context for this equation.						
	5a. Interpret the product (a/b) x q as a parts	Do the same with $(2/3) \ge (4/5) = 8/15$.						
	of a partition of q into b equal parts;	In general, $(a/b) \times (c/d) = ac/bd$.						
	equivalently, as the result of a sequence of	In general, $(a,b) \times (c,d) = ac/bd$.						
	operations a x $q \div b$.							
	operations a x q . o.							
L	I		1					

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
1	5b. Find the area of a rectangle with				
	fractional side lengths by tiling it with unit				
	squares of the appropriate unit fraction side				
	lengths, and show that the area is the same				
	as would be found by multiplying the side				
	lengths. Multiply fractional side lengths to				
	find areas of rectangles, and represent				
	fraction products as rectangular areas.				
1	6. Interpret multiplication as scaling				
	(resizing), by:				
	6a. Comparing the size of a product to the				
	size of one factor on the basis of the size of				
	the other factor, without performing the				
	indicated multiplication.				
1	6b. Explaining why multiplying a given				
	number by a fraction greater that 1 results				
	in a product greater than the given number;				
	explaining why multiplying a given number				
	by a fraction less than 1 results in a product				
	smaller that the given number; and relating				
	the principle of fraction equivalence $a/b =$				
	(nxa)/(nxb) to the effect of multiplying a/b				
	by one.				
1	7. Solve real world problems involving				
	multiplication of fractions and mixed				
	numbers, e.g., by using visual fraction				
	models/equations to represent the problem.				
1	8. Apply and extend previous	Create a story context for $(1/3) \div 4$, and use a			
	understandings of division to divide unit	visual fraction model to show the quotient.			
	fractions by whole numbers and whole	Use the relationship between multiplication			
	numbers by unit fractions.	and division to explain that $(1/3) \div 4=1/12$			
	8a. Interpret division of a unit fraction by a	because $(1/12) \ge 4 = 1/3$.			
	non-zero whole number, and compute such				
	quotients.				

ML	Expectation:	Sample Problem / Explanation	Pacing	^	Resources
1	8b. Interpret division of a whole number by	Create a story context for $4 \div (1/5)$, and use a			
	a unit fraction, and compute such quotients.	visual fraction model to show the quotient.			
		Use the relationship between multiplication			
		and division to explain that $4 \div (1/5) = 20$			
		because 20 $x(1/5)=4$.			
1	8c. Solve real world problems involving	How much chocolate will each person get if 3			
	division of unit fractions by non-zero whole	people share 1/2 lb. of chocolate equally?			
	numbers and division of whole numbers by	How many 1/3-cup servings are in 2 cups of			
	unit fractions, e.g., by using visual fraction	raisins?			
	models and equations to represent the				
	problem.				
	rement and Data				
5.MD	Convert like measurement units within a g	iven measurement system		г – – – т	
1	1. Convert among different-sized standard				
	measurement units within a given				
	measurement system (e.g., convert 5 cm to				
	0.05 m), and use these conversions in				
	solving multi-step, real world problems.				
5.MD	Represent and interpret data			ΓΓ	
2	2. Make a line plot to display a data set of	Given different measurements of liquid in			
	measurements in fractions of a unit $(1/2,$	identical beakers, find the amount of liquid			
	1/4, $1/8$). Use operations on fractions for	each beaker would contain if the total amount			
	this grade to solve problems involving	in all the beakers were redistributed equally.			
	information presented in line plots.				
5.MD		pts of volume and relate volume to multiplication	on and to a	uddition	
1	<u>3. Recognize volume as an attribute of solid</u>				
	figures and understand concepts of volume				
	measurement.				
	3a. A cube with side length 1 unit, called a				
	"unit cube," is said to have "one cubic unit"				
	of volume. Can be used to measure volume.				
	3b. A solid figure which can be packed				
	without gaps or overlaps using n unit cubes				
	is said to have a volume of n cubic units.				

Mastery Level (ML)	Codes: 1=Standard should be taught in depth; 2=Students need a basic foundation; 3=If time permits

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
2	4. Measure volumes by counting unit cubes,				
	using cubic cm, cubic in, cubic ft, and				
	improvised units.				
1	5. Relate volume to the operations of				
	multiplication and addition and solve real				
	world and mathematical problems involving				
	volume.				
	5a. Find the volume of a right rectangular				
	prism with whole-number side lengths by				
	packing it with unit cubes, and show that				
	the volume is the same as would be found				
	by multiplying the edge lengths,				
	equivalently by multiplying the height by				
	the area of the base. Represent threefold				
	whole-number products as volumes, e.g., to				
	represent the associative property of				
1	multiplication.				
1	5b. Apply the formulas V= lxwxh and V=bxh for rectangular prisms to find				
	volumes of right rectangular prisms with				
	whole-number edge lengths in the context				
	of solving real world and mathematical				
	problems.				
2	5c. Recognize volume as additive. Find				
2	volumes of solid figures composed of two				
	non-overlapping right rectangular prisms by				
	adding the volumes of the non-overlapping				
	parts, applying this technique to solve real				
	world problems.				
	I				

Geometry Graph points on the coordinate plane to solve real-world and mathematical problems 5.G1. Use a pair of perpendicular number lines, 1 called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). 2. Represent real world and mathematical 1 problems by graphing points in the first quadrant of the coordinate plane and interpret coordinate values of points in the context of the situation. Classify two-dimensional figures into categories based on their properties 5.G3. Understand that attributes belonging to a All rectangles have four right angles and 2 category of two-dimensional figures also squares are rectangles, so all squares have belong to all subcategories of that category. four right angles. 4. Classify two-dimensional figures in a 2 hierarchy based on properties. 5. Identify 3-dimensional figures. 2