ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
The Number	System				
8.NS Know	that there are numbers that are not rational, and a	pproximate them by rational numbers			
1	1. Know that numbers that are not rational are				
	called irrational.				
1	2. Understand informally that every number has				
	a decimal expansion; for rational numbers show				
	that the decimal expansion repeats eventually,				
	and convert a decimal expansion which repeats				
	eventually into a rational number.				
1	3. Use rational approximations of irrational	What is the estimated value of π^2 ?			
	numbers to compare the size of irrational	By truncating the decimal expansion			
	numbers, locate them approximately on a	of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and			
	number line diagram, and estimate the value of	2, then between 1.4 and 1.5, and			
	expressions.	explain how to continue on to get			
		better approximations.			
Seeing Strue	ture in Expressions				
A-SSE Inte	rpret the structure of expressions				
1	1. Interpret expressions that represent a quantity				
	in terms of its context.				
	1a. Interpret parts of an expression, such as				
	terms, factors, and coefficients.				
1	1b. Interpret complicated expressions by	Interpret $P(1+r)^n$ as the product of P			
	viewing one or more of their parts as a single	and a factor not depending on P.			
	entity.				
1	2. Use the structure of an expression to identify	x^4 - y^4 as $(x^2)^2$ - $(y^2)^2$, thus recognizing it			
	ways to rewrite it.	as a difference of squares that can be			
		factored as $(x^2-y^2)(x^2+y^2)$			
A-SSE Wri	A-SSE Write expressions in equivalent forms to solve problems				
1	3. Choose and produce an equivalent form of an				
	expression to reveal and explain properties of				
	the quantity represented by the expression.				
	3a. Factor a quadratic expression to reveal the				
	zeros of the function it defines.				

- Mastery Level (ML) Codes: 1=Standard should be taught in depth; 2=Students need a basic foundation; 5=11 time permit	Mastery Level (ML)	Codes: 1=Standard s	nould be taught in dept	th; 2=Students need a	basic foundation: 3	3=If time permits
--	--------------------	---------------------	-------------------------	-----------------------	---------------------	-------------------

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
1	3b. Complete the square in a quadratic				
	expression to reveal the maximum or minimum				
	value of the function it defines.	<i>t</i>			
1	3c. Use the properties of exponents to transform	The expression 1.15° can be rewritten			
	expressions for exponential functions.	as $(1.15^{1.12})^{1.2} \approx 1.012^{1.21}$ to reveal the			
		approximate equivalent monthly			
		interest rate if the annual rate is 15%.			
2	4. Derive the formula for the sum of a finite	Calculate mortgage payments.			
	geometric series (when the common ratio is not				
T	1), and use the formula to solve problems.				
Expressions a	na Equations				
o.EE WORK W	I Know and apply the properties of integer	2^{2} 2^{-5} 2^{-3} $1/2^{3}$ $1/27$			
1	1. Know and apply the properties of integer	$5 \times 5 = 5 = 1/5 = 1/27$			
	exponents to generate equivalent numerical				
1	2. Use square root and suba root symbols to				
1	2. Use square root and cube root symbols to				
	y^2 -n and y^3 -n, where n is a positive rational				
	number. Evaluate square roots of small perfect				
	squares and cube roots of small perfect cubes				
	Squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational				
Creating Eau	ations				
A-CED Crea	te equations that describe numbers or relationship	05			
1	1. Create equations and inequalities in one				
	variable and use them to solve problems.				
	Include equations arising from linear and				
	quadratic functions, and simple rational and				
	exponential functions.				
1	2. Create equations in two or more variables to				
	represent relationships between quantities;				
	graph equations on coordinate axes with labels				
	and scales.				

Mastery Level (ML) Codes:	1=Standard should be taught in de	oth: 2=Students need a basic for	indation: 3=If time permits
	i standard snourd se taught in at		maanon, e n mine permite

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
1	3. Represent constraints by equations or	Represent inequalities describing			
	inequalities, and by systems of equations and/or	nutritional and cost constraints on			
	inequalities, and interpret solutions as viable or	combination of different foods.			
	non-viable options in a modeling context.				
2	4. Rearrange formulas to highlight a quantity of	Rearrange Ohm's law V=IR to			
	interest, using the same reasoning as in solving	highlight resistance R.			
	equations.				
Functions					
8.F Define, e	evaluate, and compare functions		1	1	
1	1. Understand that a function is a rule that				
	assigns to each input exactly one output. The				
	graph of a function is the set of ordered pairs				
	consisting of an input and the corresponding				
	output.				
2	2. Compare properties of two functions each	Given a linear function represented by			
	represented in a different way (algebraically,	a table or values and a linear function			
	graphically, numerically in tables, or by verbal	represented by an algebraic			
	descriptions).	expression, determine which function			
1		has the greater rate of change.			
1	3. Interpret the equation $y=mx+b$ as defining a				
	linear function, whose graph is a straight line;				
T T C (*	give example of functions that are not linear.				
Use functions	to model relationships between quantities				
1	4. Construct a function to model a linear				
	relationship between two quantities. Determine				
	the rate of change and initial value of the				
	function from a description of a relationship or				
	from two (x,y) values, including reading these				
2	F. Interpret the rote of change and initial value				
Δ	of a linear function in terms of the situation it				
	models and in terms of its graph or a table of				
	values				

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
Arithmetic w	ith Polynomials and Rational Expressions				
A-APR Perf	form arithmetic operations on polynomials				
2	1. Understand that polynomials form a system				
	analogous to the integers, namely, they are				
	closed under the operations of addition,				
	subtraction, and multiplication.				
1	2. Add, subtract, and multiply polynomials.				
A-APR Und	erstand the relationship between zeros and factors	of polynomials	T	1	
2	3. Know and apply the Remainder Theorem: For				
	a polynomial $p(x)$ and a number a, the				
	remainder on division by x-a is $p(a)$, so $p(a) = 0$				
	if and only if (x-a) is a factor of p(x).				
1	4. Identify zeros of polynomials when suitable				
	factorizations are available, and use the zeros to				
	construct a rough graph of the function defined				
	by the polynomial.				
A-APR Use	polynomial identities to solve problems	2.2.2		1	
1	5. Prove polynomial identities and use them to	The polynomial identity $(x^2+y^2)^2 =$			
	describe numerical relationships.	$(x^2-y^2)^2+(2xy)^2$ can be used to			
		generate Pythagorean triples.			
3	6. Know and apply the Binomial Theorem for				
	the expansion of $(x+y)^n$ in powers of x and y for				
	a positive integer n, where x and y are any				
	numbers, with coefficients determined for				
	example by Pascal's Triangle.				
1	7. Rewrite simple rational expressions in				
	different forms: write $a(x)/b(x)$ in the form				
	q(x)+r(x)/b(x), where $a(x)$, $b(x)$, $q(x)$ and $r(x)$				
	are polynomials with the degree of $r(x)$ less than				
	the degree of $b(x)$, using inspection, long				
	division, or, for the more complicated examples,				
	a computer algebra system.				

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
3	8. Understand that rational expressions form a				
	system analogous to the rational numbers,				
	closed under addition, subtraction,				
	multiplication, and division by a nonzero				
	rational expression; add, subtract, multiply, and				
	divide rational expressions.				
Reasoning wi	th Equations and Inequalities				
A-REI Und	erstand solving equations as a process of reasonin	g and explain the reasoning			
2	1. Explain each step in solving a simple				
	equation as following from the equality of				
	numbers asserted at the previous step, starting				
	from the assumption that the original equation				
	has a solution. Construct a viable argument to				
	justify a solution method.				
1	2. Solve simple rational and radical equations in				
	one variable, and give examples showing how				
	extraneous solutions may arise.				
A-REI Solve	equations and inequalities in one variable				
1	3. Solve linear equations and inequalities in one				
	variable, including equations with coefficients				
	represented by letters.				
1	4. Solve quadratic equations in one variable.				
	4.a Use the method of completing the square to				
	transform any quadratic equation in x into an				
	equation of the form $(x-p)^2 = q$ that has the same				
	solutions. Derive the quadratic formula from				
	this form.				
1	4b. Solve quadratic equations by inspection				
	(e.g., for $x^2=49$), taking square roots,				
	completing the square, the quadratic formula				
	and factoring, as appropriate to the initial form				
	of the equation. Recognize when the quadratic				
	formula gives complex solutions and write them				
	as a±bi for real numbers a and b.				

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
A-REI Solve	systems of equations				
1	5. Prove that, given a system of two equations in				
	two variables, replacing one equation by the				
	sum of that equation and a multiple of the other				
	produces a system with the same solutions.				
1	6. Solve systems of linear equations exactly and				
	approximately (e.g., with graphs), focusing on				
	pairs of linear equations in two variables.				
2	7. Solve a simple system consisting of a linear	Find the points of intersection between			
	equation and a quadratic equation in two	the line y=-3x and the circle $x^2+y^2=3$			
	variables algebraically and graphically.				
3	8. Represent a system of linear equations as a				
	single matrix equation in a vector variable.				
3	9. Find the inverse of a matrix if it exists and				
	use it to solve systems of linear equations (using				
	technology for matrices of dimension 3x3 or				
	greater).				
A-REI Repr	esent and solve equations and inequalities graphic	cally			
1	10. Understand that the graph of an equation in				
	two variables is the set of all its solutions				
	plotted in the coordinate plane, often forming a				
2	cure (which could be a line).				
2	11. Explain why the x-coordinates of the points				
	where the graphs of the equations $y=f(x)$ and				
	y=g(x) intersect are the solutions of the equation				
	f(x) = g(x), find the solutions approximately, e.g.,				
	tables of values or find successive				
	capter of values of find successive $f(x)$ and/or				
	g(x) are linear polynomial rational absolute				
	value exponential and logarithmic functions				
	value, exponential, and rogarithmic functions.				

ML	Expectation:	Sample Problem / Explanation	Pacing	Assessment	Resources
2	12. Graph the solutions to a linear inequality in	▲ ▲	Ŭ		
	two variables as a half-plane (excluding the				
	boundary in the case of a strict inequality), and				
	graph the solution set to a system of linear				
	inequalities in two variables as the intersection				
	of the corresponding half-planes.				
Geometry					
8.G Unders	tand and apply the Pythagorean Theorem				
1	1. Explain a proof of the Pythagorean Theorem				
	and its converse.				
1	2. Apply the Pythagorean Theorem to determine				
	unknown side lengths in right triangles in real-				
	world and mathematical problems in two and				
	three dimensions.				
1	3. Apply the Pythagorean Theorem to find the				
	distance between two points in a coordinate				
	system.				